DESIGN OF MAXIMUM ENERGY RECOVERY NETWORKS

MER NETWORKS

 Networks featuring minimum utility usage are called MAXIMUM ENERGY RECOVERY (MER) Networks.

DIVISION AT THE PINCH

RECALL THAT

- No heat is transferred through the pinch.
- This makes the region above the pinch a HEAT SINK region and the region below the pinch a HEAT SOURCE region.

Heat Sink

cooling utility

CONCLUSION

- One can analyze the two systems separately, that is,
- Heat exchangers will not contain heat transfer across the pinch.

PINCH MATCHES

• Consider two streams above the pinch

EXERCISE

• A similar rule is obtained below the pinch. Derive it and illustrate it.

CONCLUSION

• Since matches at the pinch need to satisfy these rules, one should start locating these matches first. Thus, our first design rule:

START BY MAKING PINCH MATCHES

QUESTION

• Once a match has been selected how much heat should be exchanged?

- As much as possible!
- This means that one of the streams has its duty satisfied!!

THIS IS CALLLED THE

TICK-OFF RULE

HANDS ON EXERCISE

Stream	Туре	Supply T	Target T	ΔH	F*Cp
		(°C)	(°C)	(MW)	(MW °C ⁻¹)
Reactor 1 feed	Cold	20	180	32.0	0.2
Reactor 1 product	Hot	250	40	-31.5	0.15
Reactor 2 feed	Cold	140	230	27.0	0.3
Reactor 1 product	Hot	200	80	-30.0	0.25

PINCH=150 °C

HANDS ON EXERCISE

Stream	Туре	Supply T	Target T	ΔH	F*Cp
		(°C)	(°C)	(MW)	(MW °C ⁻¹)
Reactor 1 feed	Cold	20	180	32.0	0.2
Reactor 1 product	Hot	250	40	-31.5	0.15
Reactor 2 feed	Cold	140	230	27.0	0.3
Reactor 1 product	Hot	200	80	-30.0	0.25

PINCH=150 °C

ABOVE THE PINCH

• Which matches are possible?

ANSWER (above the pinch)

• The rule is that $FCp_H < FCp_C$. We therefore can only make the match H1-C1 and H2-C2.

ANSWER (above the pinch)

- The tick-off rule says that a maximum of 8 MW is exchanged in the match H1-C1 and as a result stream C1 reaches its target temperature.
- Similarly 12.5 MW are exchanged in the other match and the stream H2 reaches the pinch temperature.

BELOW THE PINCH

• Which matches are possible?

The rule is that $FCp_C < FCp_H$. Thus, we can only make the match H2-C1

ANSWER (below the pinch)

• The tick-off rule says that a maximum of 17.5 MW is exchanged in the match H2-C1 and as a result stream H2 reaches its target temperature.

COMPLETE NETWORK AFTER PINCH MATCHES

• Streams with unfulfilled targets are colored.

WHAT TO DO NEXT?

- Away from the pinch, there is more flexibility to make matches, so the inequalities do not have to hold.
- The pinch design method leaves you now on your own!!!!!
- Therefore, <u>use your judgment</u> as of what matches to select!!

• We first note that we will use heating above the pinch. Thus all hot streams need to reach their inlet temperature. We are then forced to look for a match for H1. Please locate it.

• The match is H1-C1. We finally put a heater on the cold stream

• Below the pinch we try to have the cold streams start at their inlet temperatures and we later locate coolers (one in this case).

DISCUSSION

• State what are your objections to the pinch design method, so far!!

THESE ARE MINE

- It seems to imply building expertise
- It does not seem to guarantee that one will always obtain a good result.
- What if there are unequal number of streams at the pinch?
- What if the inequalities are not satisfied at the pinch?

GENERAL FORMULA FOR UNIT TARGETING

 $N_{min} = (S-P)_{above pinch} + (S-P)_{below pinch}$

If we do not consider two separate problems, above and below the pinch we can get misleading results.

$$N_{\min} = (S-P)_{above pinch} + (S-P)_{below pinch} =$$

=(5-1) + (4-1) = 7

If we do not consider two separate problems Nmin=(6-1)=5, which is wrong

Note: A heat exchanger network with 5 exchangers exists, but it is impractical and costly. This is beyond the scope of this course.

UNEQUAL NUMBER OF STREAMS AT THE PINCH

Above the pinch, we notice the following rule

 $S_{H} \leq S_{C}$

UNEQUAL NUMBER OF STREAMS AT THE PINCH

Indeed, if the number of hot streams is larger than the number of cold streams, then no pinch matches are possible.

Assume the matches H_1 - C_1 and the matches H_2 - C_2 have been selected. Since H_3 needs to go to the pinch temperature, there is no cold stream left to match, even if there is portions of C_1 or C_2 that are left for matching. Such matching would be infeasible.

What is then, the solution?

Split cold stream until the inequality is satisfied.

Notice that different combinations of flowrates in the split satisfy the inequality.

UNEQUAL NUMBER OF STREAMS AT THE PINCH

A similar rule can be discussed below the pinch, that is,

 $S_{H} \ge S_{C}$

and similar splitting of hot streams may be necessary.

INEQUALITY NOT SATISFIED

Consider the following case:

Suggest a solution.

Split the hot stream

SOLVE THE FOLLOWING PROBLEM

Below the Pinch :

Below the Pinch :

COMPLETE PROCEDURE

ABOVE THE PINCH

COMPLETE PROCEDURE

BELOW THE PINCH

HANDS ON EXERCISE

Туре	Supply T	Target T	F*Cp
	(°C)	(°C)	(MW °C-1)
Hot	750	350	0.045
Hot	550	250	0.04
Cold	300	900	0.043
Cold	200	550	0.02

 $\Delta T_{min} = 50 \text{ °C}$

Minimum Heating Utility= 9.2 MW

Minimum Cooling Utility= 6.4 MW

We are minimizing the number of matches. We saw already that different answers can be obtained if separate regions are not considered.